稀疏激活的混合专家模型(MoE)通过动态路由和稀疏激活机制,极大提升了大语言模型(LLM)的学习能力,展现出显著的潜力。基于这一架构,涌现出了如 DeepSeek、Qwen 等先进的 MoE LLM。 然而,随着模型参数的迅速膨胀,如何高效部署和推理成了新的挑战。
MQA 是 19 年提出的一种新的 Attention 机制,其能够在保证模型效果的同时加快 decoder 生成 token 的速度。在大语言模型时代被广泛使用,很多LLM都采用了MQA,如Falcon、PaLM、StarCoder等。 在介绍MQA 之前,我们先回顾一下传统的多头注意力 Multi-Head Attention(MHA) 多头注意 ...
当前正在显示可能无法访问的结果。
隐藏无法访问的结果